Second-order motion alone does not convey ordinal depth information
نویسندگان
چکیده
منابع مشابه
Second-order motion conveys depth-order information.
Psychophysical and neurophysiological studies have revealed that the visual system is sensitive to both "first-order" motion, in which moving features are defined by luminance cues, and "second-order" motion, in which motion is defined by nonluminance cues, such as contrast or flicker. Here we show psychophysically that common types of second-order stimuli provide potent cues to depth order. Al...
متن کاملCentrifugal bias for second-order but not first-order motion.
Limited-lifetime Gabor stimuli were used to assess both first- and second-order motion in peripheral vision. Both first- and second-order motion mechanisms were present at a 20-deg eccentricity. Second-order motion, unlike first-order, exhibits a bias for centrifugal motion, suggesting a role for the second-order mechanism in optic flow processing.
متن کاملStereoscopic depth but not shape perception from second-order stimuli
Depth can be seen using either linear (first-order) or non-linear (second-order) stereo micropatterns when, in the latter, contrast envelopes contain the disparity information. We examined whether a second-order mechanism can contribute to the perception of 3-D surface shape. Using a variety of different stimulus types, we show that for each, shape is easy to see with linear stimuli. Over a wid...
متن کاملDoes early non-linearity account for second-order motion?
A contrast-modulated (CM) pattern is formed when a modulating or envelope function imposes local contrast variations on a higher-frequency carrier. Motion may be seen when the envelope drifts across a stationary carrier and this has been attributed to a second-order pathway for motion. However, an early compressive response to luminance (e.g. in the photoreceptors) would introduce a distortion ...
متن کاملSecond-order motion without awareness: Passive adaptation to second-order motion produces a motion aftereffect
Although second-order motion may be detected by early and automatic mechanisms, some models suggest that perceiving second-order motion requires higher-order processes, such as feature or attentive tracking. These types of attentionally mediated mechanisms could explain the motion aftereffect (MAE) perceived in dynamic displays after adapting to second-order motion. Here we tested whether there...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Vision
سال: 2010
ISSN: 1534-7362
DOI: 10.1167/5.8.145